Bentuk Umum Persamaan Kuadrat dalam x => ax2 + bx + c =o (a,b,c € R) dan a ≠ 0
Cara menyelesaikan persamaan kuadrat ada 3, yaitu :
1. Memfaktorkan => (x-a) (x-b) = 0
Contoh :
a. X2 + 12x +32 = 0 => (x + 4) ( x + 8)
b. X2 + x – 56 = 0 => (x + 8) (x – 7)
c. X2 -6x – 27 = 0 => (x – 9) (x + 3)
d. 2x2 – 5x – 3 = 0 => (2x – 1) (x + 3)
e. 3x2 – 6x = 0 => 3x(x – 2)
2. Melengkapi Kuadrat Sempurna => (x - p)2 = q
Ada beberapa langkah, yaitu :
1. Koefisien x2 harus 1
2. Konstanta pindah ke ruas kanan {-> x2 + mx = n
3. Diubah ke bentuk kuadrat sempurna (x + p)2 = q
Contoh :
a. x2 + 8x + 12 = 0
x2 + 8x = -12
x2 + 8x + (1/2 . 8)2 = -12 + (1/2 . 8)2
x2 + 8x + 16 = -12 + 16
(x + 4)2 = 4
x + 4 = ±√4
x = -4 ± 2
x = -6 , -2
3. RUMUS ABC => x1,2 = { -b ± √(b2 - 4ac) } / 2a
Contoh :
a. x2 + 8x + 5 => x1,2 = { -8 ± √(82 – 4.1.5) } / 2.1
= { -8 ± √(64 – 20) } / 2
= ( -8 ± √39 ) / 2Penjumlahan dan Pekalian akar2 Penyelesaian Persamaan Kuadrat
dari x1,2 = { -b ± √(b2 - 4ac) } / 2a dengan D = b2 - 4ac maka x1 = (-b + √D) / 2a dan x2 = (-b - √D) / 2a
* D adalah Deskriminan
1. x1 + x2 = {(-b + √D) / 2a} + {(-b - √D) / 2a}
= (-b + √D - b - √D) / 2a
= -2b / 2a
= -b /aJadi, x1 + x2 = -b/a
2. x1 - x2 = {(-b + √D) / 2a} - {(-b - √D) / 2a}
= (-b + √D + b + √D) / 2a
= 2√D / 2a
= √D /a
Jadi, x1 - x2 = √D/a
3. x1 . x2 = {(-b + √D) / 2a} {(-b - √D) / 2a}
= (b2 - D) / 4a2
= b2 - (b2 - 4ac) / 4a2
= (b2 - b2 + 4ac) / 4a2
= 4ac / 4a2
= c/a
Jadi, x1 . x2 = c/a4. (x1 + x2)2 = x12 + 2(x1 . x2) + x22
(x1 + x2)2 - 2(x1 . x2) = x12 + x22
Jadi, x12 + x22 = (x1 + x2)2 - 2(x1 . x2)
5. (x1 + x2)3 = x13+ 3x12. x2 + 3x1 . x22 + x23
(x1 + x2)3 - 3x12. x2 + 3x1 . x22 = x13 + x23
(x1 + x2)3 - 3x1.x2(x1 + x2) = x13 + x23
Jadi, x13 + x23 = (x1 + x2)3 - 3x1.x2(x1 + x2)